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R O T A T I O N A L L Y  S Y M M E T R I C  S P O N T A N E O U S  S W I R L I N G  

I N  M H D  F L O W S  

B. A.  L u g o v t s o v  UDC 532.516+538.4 

The stability of steady axisymmetric MHD flows of an inviscid, incompressible, perfectly con- 
ducting fluid with respect to swirling - -  perturbations of the azimuthal components of the 
velocity field - -  is studied in a linear approximation. It is shown that for flows similar to a 
magnetohydrodynamic Hill-Shafranov vortex, the problem reduces to a one-dimensional prob- 
lem on a closed streamline of the unperturbed flow (the arc length of the streamline is the spatial 
coordinate). A spectral boundary-value eigenvalue problem is formulated for a system of two 
ordinary differential equations with periodic coefficients and periodic boundary conditions. Suf- 
ficient conditions under which swirling is impossible are obtained. Numerical solution of the 
characteristic equation shows that, under certain conditions, for each streamline there is a real 
eigenvalue that yields monotonic exponential growth of the initial perturbations. 

T h e  problem of spontaneous swirling is whether a rotat ionally symmetric flow can appear  in the absence 
of evident sources of rotation, i.e., when axisymmetric motion without  swirl is certainly possible. 

Format ion  of a bathtub vortex may serve as the simplest example [1]. In this case as well as in the case 
of intense mesoscale atmospheric vortices (such as dust columns, waterspouts, and tornados),  the mechanism 
responsible for generation of swirling mot ion is not completely understood. It is possible that  spontaneous 
rotation plays an important  role in this mechanism. The problem of spontaneous rotat ion was considered 
in [2, 3], where examples of approximate solutions describing this phenomenon are given. However, in these 
examples, a rotating fluid flows into the domain considered, and this makes them insufficiently convincing. 

A more  rigorous formulation of this problem is given in [4, 5]. The s tatement  of the problem proposed 
in those papers  guarantees a strict control  over the kinematic flux of the axial component  of the angular 
momentum,  which excludes inflow of the rotating fluid in the flow domain. In the case of MHD flows, in 
[6] it is shown that it is necessary to control  the flux of the axial component of the angular momentum 
transferred by the magnetic field and the problem is formulated so as to exclude inflow of this component 
of the angular  momentum. The appearance of a swirling flow in a viscous fluid is t reated as a bifurcation 
from the initial axisymmetric flow to a swirling flow due to instability [2], i.e., in this case, for fixed boundary 
conditions the  problem has at least two solutions - -  with and without  swirl. For inviscid flows, this problem is 
meaningless. In this case, there exist many axisymmetric solutions (without swirl) and rotationally symmetric 
solutions (with swirl) in a bounded domain. Therefore, the appearance of spontaneous swirling is treated as 
instability of the initial axisyrnmetric flow that  leads to growth of the amplitude of the azimuthal velocity 
and an increase in the azimuthal component  of the kinetic energy at the expense of the poloidal one (in 
the exact nonlinear formulation, their sum remains constant because of the law of conservation of energy). 
To avoid misunderstandings, we point out  that  the appearance of swirling flow does not violate the law 
of conservation of angular momentum. In an inviscid fluid, differential rotat ion which conserves angular 

Lavren t ' ev  Institute of Hydrodynamics,  Siberian Division, Russian Academy of Sciences, Novosibirsk 
630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 5, pp. 120-129, 
September-October ,  2000. Original article submitted July 6, 2000. 

870 0021-8944/00/4105-0870 $25.00 (~) 2000 Kluwer Academic/Plenum Publishers 



momentum appears, and in a viscous fluid, subject to the no-slip condition on the boundaries of the flow 
domain, angular momentum is not necessarily conserved and a swirling flow similar to a bathtub vortex can 
appear. 

The difficulties encountered in studies of three-dimensional flows prompts one to a search for the 
simplest situations where the phenomenon considered is possible. In this connection, the stability of steady 
axisymmetric flows with respect to swirling with rotationally symmetric perturbations has been studied. 

It has been shown [4, 5] that  the bifurcation of axisymmetric flow (appearance of rotationally symmetric 
flow) does not occur for an arbitrary compressible fluid with variable viscosity. For axisymmetric MHD flows 
of a viscous incompressible fluid with finite conductivity in a magnetic field, it is shown [6] that  rotationally 
symmetric spontaneous swirling flow is impossible if the section of the flow domain by a meridian plane is 
simply connected. In such domains, the poloidal components of the magnetic field decay with time because 
of finite conductivity. 

For a perfectly conducting fluid, the character of the connectedness of the flow domain is of no im- 
portance because, in axisymmetric flows of such a fluid, the poloidal components of the magnetic field do 
not vanish since the magnetic field is frozen-in, and, as was shown in [7], under certain conditions, there is 
instability against swirling (linear growth of azimuthal perturbations with time). 

In the present paper, we use a linear approximation to study the possibility of rotationally symmetric 
spontaneous swirling flow resulting from exponential instability of the initial axisymmetric flow of an inviscid 
perfectly conducting fluid in a magnetic field of the type of a Hill-Shafranov vortex in a bounded domain. 

In the conventional notation, flows of a perfectly conducting incompressible fluid in a magnetic field 
are described by the following system of equations (fluid density p = 1): 

v t - v x ~ q - h x j = - X T f ,  f = p - b v 2 / 2 ,  j = r o t h ,  w = r o t v ,  

h ~ = r o t ( v x h ) ,  d i v v = 0 ,  d i v h = 0 ,  h=H/x / -4 -~ .  

In cylindrical coordinates r = (r, ~, z), v = (u, v, w), h = (hi,  h, h3), the steady rotationally symmetric flows 
considered are given by the relations 

a(r  0r a(r a r  
U ~  W--~- - -  

r O z '  r 0 r '  

where a(~b) and/3(~b) are arbitrary functions of r  

= + / 3 a ( r  

and by the Grad-SheSranov equation for 

hi --- /3(~b) 0~ fl(r 0 r  
r cOz' h 3 = - -  , (1) r Or 

h = +/3r(r  

where 

(2) 
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In Eqs. (1)-(3), one of the functions (a or/3) can be taken equal to 1 without loss of generality. The functions 
f(~b), F(r  and f~(r can depend on r arbitrarily. Since we consider the stability of a steady axisymmetric 
flow, it is necessary to set F = 0 and f~ -- 0 in the initial flows. Next, the functions a and/3 are chosen 
to be constant and c~ -- 1. Then, /3  has the meaning of the factor of proportionality between the poloidal 
components of the velocity and the magnetic field in the initial steady flow: h p  = /3vp. In this case, the 
Grad-Shafranov equation simplifies to 

0 2 r  1 0 r  002r r 2 

Or 2 r Or ~" ~ = 1 - ~'5 f ' ( r  (4) 

The pressure is determined by Bernoulli's integral along the streamline p § (u 2 § v 2 § w2)/2 -- f ( r  
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Below we consider flows in a bounded domain and, therefore, there is no need to match the inner and 
the outer  flows. As a result ,  it becomes possible to  obtain a wide class of exact  analytical solutions tha t  

describe the initial flows. 
For f ( r  = K1r  + K 2 r  2 with some constants K1 and K2, there exist solutions of the form r  z) -- 

go(r)  + g 2 ( r ) z  2 + . . .  + g2nz  2n tha t  are symmetric about  the plane z = 0 (and nonsymmetric if odd powers 

of z are added) and solutions of the form ~ ( r ,  z )  = g ( r )  sin ( k z )  (if K1 -- 0). Determination of flows of this 
form reduces to integration of ordinary differential equations. In particular, among solutions of the first type  
there is a solution that  corresponds to the well-known Hill-Shafranov vortex in a ball generalized to the case 
of an ellipsoid of revolution. This solution is given by the formula 

r  z)  = u r n ( 1  - _ 

In these flows, the streamlines are closed and any closed streamline can be t rea ted  as the boundary of the 
flow domain. This allows one to study the stability against rotation for a wide class of flows given by exact 
analytical solutions in s imply and multiply connected domains. 

In what  follows, we consider the problem of the  stability of a steady axisymmetric flow (v ---- 0 and 
h ---- 0; accordingly, F -- ~ = 0) against swirling - -  appearance of rotationally symmetric flow (v ~ 0). In 
a linear approximation, the evolution of the azimuthal  components of the velocity and the magnetic field is 
not coupled with the evolution of the poloidal components  and can be considered independently. The  main 
aim is to determine whether  exponentially growing solutions exist for values of ~ in the interval 0 < ~ < 1 

and to obtain conditions under  which this is possible. 
The  azimuthal components  of the velocity v~ = v and the magnetic field h~ --- h satisfy the equations 

u v  h l h  u h  h l v  
v t  + u v r  + WVz + ~ = h I h r  + h3hz  + , h t  + u h r  + w h z  - ~ = h l v r  + h3vz  - - -  (5) 

r r r r 

In a linear approximation, u ( r ,  z ) ,  w ( r ,  z ) ,  h i ( r ,  z ) ,  a n d  h3(r ,  z )  do not depend on t ime and coincide with their 
initial values. On the boundary  of the axisymmetric domain D, the following conditions must be satisfied: 
v n  = 0 and  h n  = 0, where n = (n~, 0, nz) is the outward unit normal to the boundary  of the flow domain D. 

We assume that there  is a steady solution of Eq. (4) in an a.xisymmetric domain D satisfying the 
boundary  conditions formulated above. As shown above, such flows exist. As an example, we take the 
magnetohydrodynamic Hill-ShmCranov vortex and consider the flow inside a sphere on whose boundary r = 0. 
In this case, ~b = r2(1 - r 2 - z 2 ) / 2 .  Here and below, we use the dimensionless variables (lengths are measured 

in the radii of the sphere, velocities are scaled by the velocity at the center of the sphere, and time is measured 
in the units of the ratio of the sphere radius to the above-mentioned velocity). Under  these conditions, system 

(5) takes the form 

vt  + u ( v  - flh)r + w ( v  - ~ h ) z  + u ( v  - ~ h ) / r  = O, 
(6) 

ht  + u ( h  - ~ v ) r  + w ( h  - ~V) z  - u ( h  - ~ v ) / r  = O, 

where, in particular, u = r z  and w = I - 2r 2 - z 2 for the Hill-Shafranov vortex.  The structure of Eqs. 
(6) makes it possible to consider them on any closed streamline. In this case, the value of ~ on the chosen 

streamline plays the role of a parameter.  Indeed, we have 

0 0 0 
+ w = ( 7 )  

Here q(s )  = ~ + w 2 is the  absolute value of the velocity [8 is the arc length along the streamline reckoned 

from the point  where r ( s )  at ta ins  a maximum value on the streamline]. Since the streamlines are closed, the 
functions q( s )  and r ( s )  for the initial flow are periodic with period s . (~)  determined by the total length of 
the chosen streamline. We assume that  on the streamlines considered, the minimum values q(0) > 0 and 

r ( 0 )  = r0 > 0. 
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In view of (7), Eqs. (6) take the form 

o (h) 0 h-/3v 
- = + q ( s )  - = 0 .  ( 8 )  (rv)t + q(s) r(v /3h) O, r t Os r 

Let A = (v - / 3 h ) r / r o  and B = (h - /3v ) ro / r .  Instead of the variable s, we introduce a variable x such that  
8 

x = q(s)" (9) 
0 

For the Hill-Shafranov vortex in a ball, the dependence of r (x)  and z(x)  along the streamline passing through 
the point (r  = r0, z -- 0) is obtained from the following system of differential equations: 

- - ~ = r z ,  dx 1 2r 2 z2; r ro 0 < r o ~ <  z = 0  for x = 0 .  

Eliminating z, for r we obtain the equation r tt -- r - 2r 3. From this, using the boundary conditions, we 

obtain r t2 --- r 2 -  r 4 -  ro 2 + ro 4 and, finally, we have (/~ ---- ~ )  

r(x)  = ro /dn  (/~x), z ( z )  = ro#k 2 sn (/~x) an ( # x ) / d n  (#x) ,  

x .  = x ( s . )  = 2 g ( k ) / , ,  k = V/1  - + = + = 

where sn (#x),  cn (#x), and dn  (#x) are corresponding Jacobian elliptic functions and K(k )  is a complete 
elliptic integral of the first kind. 

As a result, in view of (9), Eqs. (8) become 

At + Ax - 3g(x)Bx  = O, Bt + Bx - 3 f ( x ) A x  = 0, (10) 

where g(x) = (r (z ) / ro)  2 and f ( x )  = (ro/r(x))  2 [g(x ) f (x )  = 1]. Solving these equations for Ax and Bx, we 

obtain 

(1 - /32)Ax = -:At - 3g(z )Bt ,  (1 - 32)B~ = - B t  - / 3 f ( x ) A t .  (11) 

We seek a solution of these equations in the form 

d(x, . t )  = a(x) exp ( -A. t ) ,  B(x ,  t) = b(x) exp ( - A . t ) ,  (12) 

where it is convenient to represent A. as A. = (1 -/32)A. Substituting (12) into (11), we obtain the following 

system of equations for a(x) and b(x): 

a' = Aa +/3Ag(z)b, g = Ab +/3Af(x)a.  (13) 

Solutions of system (13) must be periodic with the period equal to x . .  This  requirement determines 
a point set (as will be shown below) of eigenvalues An for which a nontrivial solution of this system exists. 
If there is even a single eigenvalue with a negative real part, the initial flow is unstable and swirling flow 

appears. 
Let  us give certain a priori estimates. We integrate the sum (ba) r + (~b) t over the period. This yields 

2 .  

~) f (ba + 45 + /3g(x)lbl 2 + t3f(x)Ial 2) dx = 0. (14) + 

o 

From (14) it follows that A is purely imaginary and there are no exponentially growing solutions of system 
(10) if/3 is equal to or greater than unity. This coincides with the result obtained earlier in [7]. 

Let  a = rU and b = V / r .  Then, for U and V we obtain the equations 

V' = (:~ - z ( x ) ) V  +/3~V,  V'  = (~ + z ( x ) ) Y  +/3;~U, 

where z (x)  = gt (x) / (2g(x))  = r t ( x ) / r (x )  is the value of the coordinate z on the streamline. From this, using 

the complex conjugate form of these equations, we obta in  
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~g, X .  2 .  

+ x) f(Iul: + IVl:) dx -- 2 f z(x)(Iul: - I v l : ) d~ -  Z(..X + X) / (~U + O'V) dz, 
o o o 

X .  

X) f [(?u + Or) § ~(IUI 2 + IVlZ)] dz = O. (~ + 

o 

Combining these equalities, we find that  
:g .  ~g* 

x)(1 - z : )  f(IuI + IVI2)dx = 2--/z(x)(IuI 2 - IV l : )dx .  (~X + 
*l 

o o 

Since on each streamline, Iz(x)l < 1, it is obvious t ha t  I(A + i)[(1 - ~2) ~< 2. Thus, the eigenvalues A. lie in 

the strip IRe A. I ~ 1. 
Similarly, integrating the quantity ha' + bb t over the period, we obtain for real values of ~ (ImA -- 0): 

;T.  

+ / ( x ) ) a b  + ]bl 2 + lal 2) dx -- 0. (15) 
. J  

0 

It follows from (15) tha t  monotonic rotation is impossible if ~(p + 1) < 1, where p = max (r(x)/ro) 2 in the 
domain considered. For the Hill-Shafranov vortex, we have p = (1 - r~))/r 2. 

To determine the eigenvalues in the above-formulated problem, we follow the general theory of linear 
systems of differential equations with periodic coefficients [8] and obtain the matrizant of system (13) and 
the corresponding characteristic equation. 

System (13) has two linearly independent solutions (hi(X), bl(x)) and (a2(x), b2(x)) that  assume the 
values hi(0) ---- 1, bl(0) : 0 and a2(0) -- 0, b2(0) ---- 1 at  the point x -- 0 and are obtained by the successive 
approximation method and can be presented in the form of the converging series 

hi(X) -- exp (~x)(1 + A2(x)(/~A) 2 + A4(x)(~)~) 4 + . . . ) ,  

bl (x) -- exp (~/x)(B1 (x) (f~A) + B3 (x) (fiLl) 3 + . . . ) ,  

a2(x) = exp ()~x)(Al(X)(/~A) + A3(x)(~A) 3 + . . . ) ,  

b2(x) -- exp (Ax)(1 + B2(x)(~)~) 2 + Ba(x)(f~A) 4 + . . . ) .  

Here An and B~ are defined by the formulas 
X ~ 

Al(X)---- /g(xl)dXl, Bl(x) ~- / f(xl)dxl, 
o o 

X 1;1 ,l~ ~ 1  

A2(x) = f f(xl)dxl fg(x2)dx2, B2(x) = fg(xl)dxl f f(x2)dx2, 
0 0 0 0 

X ~I :g2 

o o o 
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X ~ 1  ~ 2  

B3(x)~/ f (x l )dXl /g(x2)dx2/ f (x3)dx3 ,  
o o o 



A4(x) = / f (x l )dxl  /g(x2)dx2 / f(x3) dx3 /g(x4)dx4,  
0 0 0 0 

X ;~1 X2 ~g3 

B4(x) = / g ( x l ) d X l  f f ( x 2 ) d x 2 / g ( x 3 )  dx3/ f (x4)dx4 ,  
0 0 0 0 

The characteristic equation for the multiplicators p is given by 

p2 _ (al 4- b2)p 4- alb2 - a2bl = O. (16) 

Equation (16) has two roots pl and P2, for which the following equalities hold: 

piP2 : alb2 - a2bl = exp (2Ax.) (17) 

(here the second equality is valid by virtue of Liouville's formula) and 

pl 4- P2 -= al 4- b2. (is) 
In (16)-(18), the values of the functions a l (x)  and b2(x) correspond to x = x. .  

From the requirement of periodicity it follows that  at least one of the multiplicators must be equal to 

unity. Using this, from (17) and (18), we have 

' 1 + exp (2Ax,) = al(x,) + b2(x,). (19) 

Substituting the functions obtained above into the right side of this equation, we have 

1 + exp (2Ax,) = exp (Ax,)(2 + C2(/3A) 2 + C4(/3A) 4 + . . . ) ,  (20) 

where C2n are constants defined by the formulas C2 = A2(x,) + B 2 ( x , )  = Al(x,)Bl(x,)  and C2,~ = A2,~(x,) + 
= 2x. C2n/(2n). (n >1 2), we transform B2n(x.) (n ~ 2). Introducing the notation Ax. ~, C2 -- c, and C2n -- 2n w 

Eq. (20) to 

cosh ( = 1 4 -  C(f~)2/2! -[- C4(~)4/4! n t- . . . .  (21) 

For the quantit ies C2n, the following estimates are valid: p-n < c2n < pn (n ~ 1). It follows from these 
relations that  the series on the right side of (21) converges for any t3~ and is an entire function in the complex 
plane (,  and the set of eigenvalues is a point set. Numerical calculations for the Hill-Shafranov vortex show 
that for c2~, s tronger inequalities than those presented above hold, namely: 1 < c < p and 1 < c2n < c n 
(n /> 2). The  first of these inequalities has been proved rigorously for an arbi t rary function r(x), i.e., for 
arbitrary axisymmetric flows with closed streamlines. However, we did not  prove these inequalities rigorously 

for n ~> 2 in the general case. 
We now expand cosh r into a series. As a result, after dividing by (~3() 2 [the eigenvalue r = 0 

corresponds to a s teady swirling flow (2)], we obtain 

( 1  - f/2c)/2! 4- (1 - t34c4)~2/4! 4- (1 -/36c6)r 4 - . . .  4- (1 - t32nC2n)~2(n--1)/(2n)] 4 - . . .  = 0. (22) 

As was mentioned above, roots of this equation that  have negative real parts correspond to exponential 
growth of the initial perturbations. From (22) it follows that  a sufficient condition for the existence of such 
a root is the existence of a root with a nonzero real part,  because if a root  ~ exists, the root - (  also exists. 
Using this fact, below we consider only roots that  lie in the right half-plane Re ( / >  0. At tempts  to seek a 
root in the form of an expansion in powers of j3 do not lead to the answer since a root with nonzero real part 
can appear only for finite values of the quantities f~2nC2,~. For 13 = 0, the eigenvalues are equal to ~,~ -- 27rni. 
For ~3 << 1, assuming that  the function (n(~) is analytic, we can seek roots in the form of power series in j3, 
but in this case only purely imaginary quantities are obtained. The series thus obtained have finite radius of 

convergence, beyond which branch points and roots with nonzero real par t  can appear. 
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To find real roots and determine the range of values of ~ for which they can appear, we used the 
following numerical procedure. (These calculations were performed together  with M. S. Kotel'nikova.) From 
Eq. (19), we obtained the function f?(q) (q = Z~): 

1 + exp (2q/Z) = exp (q/Z)(51(x.) + ~2(x.)) = 2exp (q/~) d, 
(23) 

d = (hi(X.) + b2(2~,))/2, Z = q/In (d + ~ - 1 ), 

where 51 (x,) = h i (X, )exp  ( -q /3 )  and ~2(x.) = b2(x.)exp ( -q /Z)  are the values of solutions at the point x.  
for the equations 

al 1 = qg(x)bl, b~ = qf(x)al ,  at2 = qg(x)~2, t)12 = qf(x)a2 (24) 

with the initial conditions 51(0) = 1, bl(0) = 0, 52(0) = 0, and ~ ( 0 )  = 1. Equations (24) were solved 
numerically. The function Z(q) was determined from (23). Plots of these functions for various streamlines 
specified by the quant i ty  r0 for the Hill-Shafranov vortex are shown in Fig. 1 (curves 1-6 refer to values 
r0 = 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6, respectively). For small and large values of Iql, we can obtain analytic 
representations of these curves. As Iql --* 0, from (23) we obtain 

/3 = (1 + (c2 - c4)q2/(24c) + O(qa))/x/~. 

In the case of the Hill-Shafranov vortex, we have ca < c 2 and for 1 > / 3  > 1 / v ~  (c/> 1) there is a positive real 
root (and, therefore, as was shown above, a negative real root) of the  characteristic equation that  indicates 
the appearance of instability. 

According to the general theory [9], we have the foUowing asymptot ic  representation of solutions of 
system (13) for Iql -* c~: a(x) = rU,(x) exp (Ax) and b(x) = V.(x) exp (Ax)/r,  where U. and V. satisfy the 
equations 

U~, = Z,~V. - z(x)U. ,  V~, = 3AU. + z(x)V. .  (25) 

Let (U1, 1/1) and (U2, 1/2) be linearly independent solutions of this sys tem in the form 
oO 

U1 = exp (ZAx) Z UI'n(ZA)-n' 1/1 = exp (~Ax) ~ VI,n(/3A) -n,  
n - ~ 0  n = 0  

(30 C~ 

U2 = exp (-~3Ax) Z U2'n(ZA)-n' V2 = exp (-/hAx) ~ V2,n(ZA) -n,  
n=0 n=0 

where ULn, Vl,n, U2,n, and V2,n are determined from a recurrent sys tem of equations that  is obtained after 
substitution of these expansions into (25). As a result, we obtain 
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Ul,o = 1, u 1 , , ,+ 1  = -~ 1,,~ - z ( z ) v l , , ~  

0 

~ , 0 = 1 ,  1 {w '  v~,, ,+, = - 3  ~, ~''~ - z (~ )v l , , ,  + 

o 

U2,0 = - 1 ,  u 2 , . + i  = ~ ~,. - z (=)v~ , .  - 

Tit. 

o 

3g. 

' . ,  / , ) V2,o = 1, v2,,,+~ = ~ \ ~,~ - ~(~)v~,, ,  + z ( = ) ( v l ~  - ~ ( ~ ) � 8 9  d=  . 

o 

Using these expansions and neglecting terms of order O(1/Iq12), w e  find that 1 + exp (2q//3) = exp (q/fl)[(1 + 
O(1/Iql 2) coshq + ('7/q + O(1/]q[ 2) sinh q] and, for real q > 0, we obtain 

1 ~3' x .  
/3 = 1 + , y / r  q = 1 - / 3 '  ~ = -~  z2(=) dz .  

o 

We recall tha t  the increment of growing perturbations A. = (1 - ~2)A and it goes to zero as/3 ---, 1. 
In Fig. 1, one can see that  for a specified value of/3, A. assumes different values on different streamlines 

(obviously, this is also true for complex eigenvalues). Therefore, there are no solutions of the form v = 
exp (-A. t)V(r ,  z) and h = exp (-A.t)H(r,  z), where A. r 0 is a constant tha t  is the same for the entire 
domain. An exception is the value A. = 0, for which a solution exists and corresponds to a steady swirling 
flow (2). 

To determine complex roots,  we solved Eq. (22) numerically. The coefficients c2n were calculated using 
the formula 

c2n = ~ (A2n(x.) + B2n(x.)), 
2x. 

where A~n(x) and A2n(x) are solutions of the equations 

A~ = g(x), A' 2 = A1/g(x), A'3 = g(x)A2,.. . ,  

B; = 1/g(=),  B~ = g(=)B1, B'a = B~/g(=) . . . .  

with zero boundary  conditions Ai(0) = Bi(0) = 0. 
As a result, for small absolute values of/3, the roots and the range of values of ~ for which the roots 

appear obtained by these two methods  coincided with accuracy up to a third significant digit. In addition, 
calculations using the second me thod  yielded complex values with nonzero real and imaginary parts, and this 
indicates tha t  oscillatory instability is possible. 

Thus,  it has been shown by the numerical calculations that  for any streamline (r0 > 0) there is a value 

of/3, namely, 

f 1>/3> ~ ,  c=jr2(x) dx j r  Lx) />1, (26) 
o o 

for which a real eigenvalue exists and, hence, initial perturbat ions grow exponentially. The  results, obtained 
in the numerical calculation of roots  from Eq. (22), suggest that  criterion (26) also defines the boundary of 
nonmonotonic (oscillatory) instability. 

Direct numerical calculations of unsteaxty solutions of Eqs. (10) with the periodic initial da ta  A = 
vo(x)r/ro and B = -/3vo(x)ro/r and periodic boundary conditions [initial da ta  of this form correspond to 
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the azimuthal perturbations v ---- vo(x) and h -- 0] confirm the occurrence of an instability of exponential type 
and are in agreement with criterion (26). 

It has been shown [5-7] that a mechanism that provides for counter-gradient flux of the axial component 
of angular momentum is necessary for the appearance of a spontaneous swirling flow. The results obtained 
here indicate the possibility of appearance of rotationally symmetric spontaneous swirling flow due to such 
a flux related to a magnetic field, at least, in a linear approximation for the model of an inviscid perfectly 
conducting fluid. The question that remains open is whether this result holds if nonlinearity and viscosity 
are taken into account. 

The author is grateful to R. M. Garipov for his useful discussions of the results. 
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